Portfolio Analytics Dashboard

March 15, 2024
Data Visualization Insurance Analytics
Python Streamlit Data Engineering

Project Overview

An interactive dashboard for real-time portfolio performance analysis in the London specialty insurance market, providing actionable insights for portfolio managers and underwriters.

Features

1. Real-time Analytics

  • Live portfolio performance metrics
  • Dynamic risk exposure analysis
  • Automated data updates
  • Customizable views

2. Interactive Visualizations

# Example dashboard component
import streamlit as st
import plotly.express as px

def create_portfolio_heatmap(data):
    fig = px.imshow(
        data,
        labels=dict(x="Risk Category", y="Portfolio Segment"),
        title="Portfolio Risk Heatmap"
    )
    return fig

def render_dashboard():
    st.title("Portfolio Analytics Dashboard")
    
    # Portfolio Overview
    st.header("Portfolio Overview")
    portfolio_metrics = calculate_portfolio_metrics()
    display_metrics(portfolio_metrics)
    
    # Risk Analysis
    st.header("Risk Analysis")
    risk_data = get_risk_data()
    st.plotly_chart(create_portfolio_heatmap(risk_data))

3. Key Metrics

  • Loss ratio trends
  • Premium analysis
  • Risk concentration
  • Portfolio diversification

Technical Stack

Frontend

  • Streamlit
  • Plotly
  • Altair
  • Custom CSS

Backend

  • Python
  • Pandas
  • NumPy
  • SQLAlchemy

Data Sources

  • Internal databases
  • Market data feeds
  • Claims systems
  • External APIs

Implementation Details

Data Pipeline

  1. Data Collection
    • Automated ETL processes
    • Real-time data streaming
    • Data validation
  2. Processing
    • Risk calculations
    • Performance metrics
    • Trend analysis
  3. Visualization
    • Interactive charts
    • Custom reports
    • Export capabilities

Security Features

  • Role-based access control
  • Data encryption
  • Audit logging
  • Secure API endpoints

Business Impact

  • 60% reduction in report generation time
  • 45% improvement in decision-making speed
  • 30% increase in portfolio efficiency
  • Enhanced risk management capabilities

Future Roadmap

  1. Machine learning integration
  2. Predictive analytics
  3. Mobile optimization
  4. API development

Documentation

User Guide API Documentation